
 ■"

AD/A-005 412

AUTOMATIC PROGRAM VERIFICATION II:
VERIFYING PROGRAMS BY ALGEBRAIC AND
LOGICAL REDUCTION

Norihlsa Suzuki

Stanford University

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

December 1974

DISTRIBUTED BY:

um
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

■-—"-—--j- ■'-

•^■1 ■""■
1 ■

UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGEflWi^ D«(« Enfrmd)

replacement rules, fast algorithm for simplifying formulas using proposi-
tional truth value evaluation, and a depth first proof search process.
The basis of deduction mechanism used in this prover is Gentzen-type
formal system. Several sorting programs including Floyd's TREES0RT3
and hoare's FIND are verified. It is shown that the resulting array is
not only well-ordered but also a permutation of the input array.

Jik.
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEOWi«) Dalm Fntertd)

- - -- —•■ - ■ ■■

■ ■»■■' ■ '" ' ' ■

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-255

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-74-473

DECEMBER 1974

AUTOMATIC PROGRAM VERIFICATION II:

VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION

by

Norihisa Suzuki

ABSTRACT:
Methode for verifying progroms uritten in a higher level programming language are
deviled and imp!em-nted. The system can verify programs uritten in a subset of
PASCAL, which may have data structures and control structures such as WHILE,
REPEAT. FOR, PROCEDURE. FUNCTION and COROUTINE. The process of creation of
verification conditions is an extension of the work done by Igarashi, London and
Luckham uhich is based on the deductive theory by Hoare. Verification conditions
are proved using specialized simplification and proof techniques, which consist
of an arithmetic simplifie-, equality replacement rules, fast algorithm for
simplifying formulas using prepositional truth value evaluation, and a depth
first proof search process. The basis of deduction mechanism used in this proven
is Gentzen-type formal system. Several sorting programs including Floyd's
TREES0RT3 and Hoare's FIND are verified. It is shoun that the resulting arr.iy is
not only ue I I-ordered but also a permutation of the input array.

This rfiearch was supported in pari by (he Advanced Research Projects Agency of the Office of the
Secretary of Defence under contract DAHC I5-75-C0435.

The view and conclusiors contained in this document are those of the author and should not be
interprtttd as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the US Government.

Reproduced in the USA. Avauaole from the National Technical Information Service, Springfield
Virginia 22/5/.

i^
.

■ ■ ■ -■---■ —
■ -

mmmmtmttm. •a^MOd

■- -■■ ■ -■■■

r

r

Introductioti

Verifying that programs work faultlessly is a necessity. We can test whether they work or not

in several case But unless we prove the correctness of programs, it is impossible to claim that they

endure long lasting usage. Since proving by hand is cumbersome and not always free of errors,

mechanization of venficution is strongly desired.

Some attempts have been made to verify programs mechanically [1].[2],[10],[11], but there arc

several problems which must be solved in order to make automatic verification of programs

practical

First, we have to find a way to express assertions more easily. Most of the previous verifiers

require assertions to be written in first order predicate sentences with a fixed number of oredefmed

predicate symbols and function symbols. But this is in many cases inconvenient and mfeasible. For

example, n we have to deal with the correctness of programs with complex data structures, we need

to express properties in higher order sentences. Thus, many complex programs have not been

verified because the assertions about programs have not been properly stated.

Second, we have to find a better way to prove verification conditions automatically. Proving

verification conditions using a general automatic theorem prover is in most of the cases

unsatisfactory. If we are verifying programs in specific domains, we can use special properties of

functions anrl predicates to construct fast special purpose provers. King[IO] and Deutscht] have

succeeded by using a built-m simplifier for integer arithmetic, bi.l these programs still cannot cope

with other domains

In most ve ification systems the user must specify 10t only input and output conditions but

also loop invariants. Although it is an undecidable problem to generate loop -nvanants. the system

should aid the piogiamm.;r in constructing loop invariants. Also, programs with complex data

structures and complex control structures must be verified, including parallel programs.

In this paper we describe a fast simplification and theorem proving facility that is a new

component of the Stanford PASCAL Verification System described by Igarashi, London and

!

- ■■— - -----

>

Luckham in [9] This system permits the prügrammei to formulate the semantics of his data

structures, procedures, and functions in simple, natural statements. These statements are used by the

system as implification and special theorem-proving rules during verification. So programs

computing over any domain can be dealt with easily.

Al an example, automatic verification of a sorting program is studied in detail. It is shown

that not cnly is the resulting array ordered but also it is a permutation of the input array. The

verification of Floyd's TREESORT program and Hoare's FIND program are listed, both of which

are verified within a reasonable amount of computation time. Because these programs are complex,

and ii?e data structures-in this case an array data structure, whose semantics has not been studied

well-they hdve been considered as one of the big challenges for automatic verification. Thus our

method of verification is very promising for practical use.

 •

II. Expressing Assertions by Structured Definitions.

Here, we make a few comments about how the user of the system might construct

documentation in a way that aids the verification of his program. The main idea is to use defined

concepts that are close to the natural concepts employed in creating the program.

As is disrusseo in the previou: section, it is impossible to state all properties of programs in

first order sentences with fixed number of predefined function symbols and predicate symbols. As an

example let us examine the process of verifying sorting programs. Suppose a program S accepts an

array A and sorts it and output it as an array B. Then, the correctness of 5 is expressed in terms of

properties thai elements of B are ordered in ascending(oi descending)order and B consists of all

elements of A and of nothing else Tht first property can be stated as

VI. (1<I<N-1:>B[I]<B[I+1]).

But one way to describe the second property is to state that there is a one-to-one mapping from

elements of A to elements of B. That is the sentence

3F. (VI. (liI<NDl<F(I)<N)AVI.J.(i<UJ<N3F(I)-F(J)) AVI. (1<I<NDA(I] =B[F (I)]))

expresses the second property.

But previous verifications of sorting programs, either manual or automatic, have dealt with

only the fust property. The detailed study of FIND by Ho3ie[7] briefly explains that to prove the

correctness it is necessary to show that the second property holds, but does not formally verify it. He

thought that the assertions were not obvious and the proof would be tedious. It is certainly

disadvantageous to introduce second order sentences because they require complicated proof

procedmes But since it is essential for the automatic verification to prove the second properties

formally, we have to invent a way to verify them.

The way to avoid using second order sentences is to extend the language by introducing; new

symbols There is also another nice thing about introducing new symbols. To express that array B is

a permutation of array A, we have to employ a rather complex sentence. It mipht be as difficult to

understand what it means as to understand what the program does. Also it is very easy to introduce

- — - .^__a_-_____.

^p^

error ■ But we can avoid complexitites by writing

Permutat ion(B,A).

In general there are two methods to introduce new symbols. The first method is to assume the

new symbol as a shorthand representation of a sentence represented by already defined symbols. The

second method is to define symbols by axioms stating the properties of these symbols. For example,

after defining axioms of prepositional calculus consisting of symbols "D" and '->", we can introduce

"A" symbol as a shorthand notation for -(AD-B) . But also we can introduce it by axioms,

AABDA. A/\BDB and AD(BDAAB).

Assertions describing a program can be structured top-down by Uiing new symbols. Their

meanings are refined succesively until everything is well-defined. An analogous concept can be

found in programming. We can enrich the language and clarify the meaning by introducing new

symbols (operations) These new operations are defined either by macros or by procedures. Macros

define new operations by using already defined concepts. So they do not give more computation

power but clarify programs Whereas, procedures can define new operations recursively, so that they

give new power.

Following this analogy to programming, we can call the way we write predicate sentences with

newly defined symbols a structured way of expressing --ssertions. n detailed study of how to

introduce new symbols is in section V, and also is found in the work by von Henke and

Luckhamf!)].

In the case of "Permutation(B,A)", we could define it as the shorthand representation of ^he

previous sentpnee. But instead v^e shall define it by a set of properties (specifications) including the

following axiom,

VA. 1 ,J.Permutat ion (Exchange(A, I, J) ,A),

where Exchange (A,! .J) is a function mapping an array A into an array resulting from

exchanging I-th element and J-th element of A. In addition, Permutation is an equivalence relation,

so we must include axioms for symmetric, reflexive and transitive properties.

We have replaced a second order statement by a relation which has arrays as individuals.

Now, arrays are a second sort of individuals.

tfß^-^rr-^mimmmtm^^m^mm^F'^^^^^^^ -^P»- m ■■--•■-■"

1

Thus, we need to have a special semantic definition for array assignment, since arrays as well

as array elements occur in assertions.

NOTATION <A,I,E>: An array obtained from A by plarmg E in the i-th

posi t ion.

ARRAY ASSIGNMENT AXIOM

P<<A.I.E>) lAUKEI P(A).

MM^MaMMMB

•w - — — ■ " ■■!-■■■■.— i

III. Documentation Statements and Their Use.

Introduction of new symbols it essential to verification for ease of both representation and

understanding oi assertions We allow users to introduce new symbols by documentation in the form

of three limple kinds of statements They are used by the prover as (i)rewriting rules to expand new

symbols, (u) reduction strategies which state that some expressions are reduced to others under

specified conditions, and (nOgoal-subgoal strategies which state that certain well-formed formu'as are

tn. - if certain others are true. We found that they are convenient and powerful.

From the method of construction of verification conditions [5],[6],[7J.[9], all the venficatior,

conditions are of the form

AIA...AAN - CIA...ACM.

Since this form of representation is more natural for understanding than disjunctive normal form,

we retain this form throughout the proof. The .)roof procedure is based on Centzen's formal system.

Thus, the validity oi each CI is proved with the assumption AIA. . .AAN.

We first explain a special pattern matching language, in which all the documentation

statements are written.

1. Pattern Matching.

A pattern is a string of symbols which match a term or a well-formed formula. Patterns consist

of pattnn constants and pattern variables. A pattern constant is an identifier and a pattern variable

is an identifier preceded by a symbol V, So »X stands for a pattern variable. Under the pattern

matching mechanism, a pattern constant matches only that symbol and an unbound pattern variable

matches any term and is bound to that term thereupon. A bound pattern variable matches only the

corresponding term

Higher order pattern matching is undecidable in general. So. in this algorithm a term with

unbound pattern variables is not matched to a term with unbound pattern vanables. But still this

restricted matching algorithm is ambiguous. For example, if a pattern aPCsX) is matched to

6

■ - -—"■ ■ -- ■ - - - ■ ■ - ■ - - ■--■■■■--■■- ■■-■ - . . -^_. - ■ ■ i I ngj^. .,_...

Q(F(A)), both wPmQ, 9X=F(A) and 9P»Q(F()), «X-A are permissible bindings. This ambiguity

is costly in computation and should be avoided if possible. Thus, in this system we employ an

incomplete but decidable procedure. The matching is done from the outer symbols, and from left to

right among parameters. So (?P(eX) matches toQ(F(A)) and yields eP=Q and ®X=F(A).

The limited facility has not caused much inconvenience Since higher order sentences can be

translated to first order sentences by introducing new symbols, all properties can be expressed in first

order sentences. We are going to see that the pattern matching does not cause much inconvenience

in the case of data structures either. Suppose A and B are both arrays. If we match »X [«Y) to

AIBHn , we get i^X-A and 9Y=B[I) by our matching algorithm. But we do not want the bindings

of i»X-A [B [1) and Y=l, since A [B N) is not meaningful.

2. Rewriting Rules.

We can use TEMPLATE statements to introduce new symbols as shorthand representations of

already defined expressions.

TEMPLATE <pattern> « <expresbion>.

Then, a rewriting rule is created from this statement. The system replaces every occurrence of

<pattein> by <expiession> according to the rule.

If we want to introduce

Ordered(A,!,J)

as a shorthand representation of

VX. (I-X'J :> AtXJsAtX+D).

then we can write

TEMPLATE Ordered(«A,tl.eJ) - VX.(I<X<J D A[X]<A[X+1]).

3. Reductinn Strategies.

Also, we can introduce new symbols by a set of axioms. These axioms can be stated by

AXIOM statements and COAL statements to produce reduction strategies and goal-subgoal

strategies respectively.

We can specify reduction strategies to simplify terms or well-formed formulas. These strategies

- M^^MM

r —- '^wi^i^m^w*

v

are of two kinds, one is an unconditional reduction and the other is a conditional reduction.

Unconditional reduction strategies can be fed into the system by statements of the form

AXIOM <pattern> •* <express ion>.

The effect of this strategy is to reduce any expression which matches the <pattern> to <expression>.

The <exptession> may have identifiers which appear in the pattern as pattern variables. They are

bound to some forms by matching. For example, one can represent one of the axioms of list data

structures,

VK.Y.CAR(CONS(X,Y))-X,

as a simplihcation rule,

AXIOM CAR(CONS(e>.eY))«X.

Then P(CAR(CONS(A.B)) is reduced to P(A) since eX is bound to A. Or,!, universally quantified

equality or equivalence relations can be represented by this method.

Conditional reduction strategies are specified to the system by statements of the form

AXIOM IF <pattern 1> THEN <pattern> « <expre5sion>.

The effect is to reduce expressions which match <pattern> to expression>. if <pattern 1> is

provable by the system. Some pattern variables of the <pattern 1> become bound when

<pattern> is matched. If the «pattern 1> does not include unbound pattern variables, the

validity of the 5entence

A1A...AAN -• -rpattern 1>.

i?. checked by recursively activating the prover. If the «pattern 1> includes unbound pattern

variables, it is tested whether it matches the antecedent part of the verification condition or not. If it

matches then we consider «pattern 1> to be provable and otherwise not provable.

For example,

VX,Y(X<YAY;XDX=Y)

IS a valid statement We want to incorporate this fact into the system by conditional reduction, and

reduce Y<X to X=Y if X<Y holds. The statement we should write is

AXIOM IF X<Y THEN 9Y<®X * X-Y.

Then if we are to reduce the statement

A<BAB<AAP(A)DP{B),

the pattern m?tches to A<B to get bindings 9Y.A and aX-B. Since there is no unbound pattern

variable, the system sets up a subgoal B<A, and tries to prove

B<AAP(A)DB<A.

winch is valid. So the statement is reduced to

B»AAB::AAP(A):)P(B).

which will be proved to be valid by equality substitution. As the previous example shows.

universally quantified theorems can be represented by this statement. But also some existentially

quantified theorems can be .epresented.

For example

VX(3Y.P(X,Y)3r{X)-G(X))

can Le represented by a statement

AXIOM IF P(X.tY) THEN FCoX) * G(X).

4. Coal-Snbgoal Strategies.

Reduction strategies turn out to be important components of proof. It is a frequently used

proof step However we rely heavily on additional goal-subgoal strategies to complete many

verification proofs Verification conditions are of th^'form

AIA...AAN - ciA..,Acn.

The problem is to prove each CI. If we can prove BlaCl and A1A. .. AAN-BI , we can deduce

A1A...AAN-.CI by modus ponens. Thus, if we have an axiom BlaCI the subproblem we have to

solve is

AIA. . .AAN ■* BI.

This fact is the motivation for employing goal-subgoal strategies.

Statements to specify strategies are of the form

GOAL <-pattern> SUB <pattern 1> <pattern n>.

The strategy constructed from this statement works as follows. If .:pattern> matches to the

consequent CI . each -pattern ^ is tested successively until one of them is provable. If <pattern

J> has unbound pattern variables . is tested to determine whether it matches one of the conjuncts

of the antecedent. If <pattern j> has no unbound pattern variables, a new subproblem

JJJ]" ""'"■" I ' ' ' —-'—' —-

A1A...AAN •* <patter;, j>

. is tested by recursively activating the prover

For example, the transitivity of V it defined by an axiom

VX.Y. GZ.(X<ZAZ<Y)3X<Y).

This is represented by a goal-subgoal strategy,
T

GOAL i»X<eY SUB X<aZAeZ<Y.

In order to prove a sentence

A<BAB<CAC<D-A<D

using this goal, first .?X<®Y is Matched to A<D to obtain «X-A and «Y-D. Then, the antecedent is

searched whether A<(?Z matches one of the conjuncts. In this case the search is successful and yields

(»Z=B. Thus, the remaining subgoal is 9Z<D, which is now B<0. So the new subproblem

A<BAB<CAC<D-.B<D

IS set up. This can be proved by using the same goal one more time. These strategics can also

represent universally or existentially quantified theorems.

Everything which goal-subgoal strategies can express can be expressed by conditional

reduction strategies, since we can express the statement

GOAL A SUB B.

by the statement

AXIOn IF B THEN A«TRUE.

However, the system uses these statements in different ways. Conditional reduction strategies are

used to reduce expression^ in both the consequent and the antecedent of verification conditions. For

example, suppose we have a conditional reduction strategy specified by

IF Al THEN A2 * C.

then

A1AA2 -» B

IS reduced to

AIAC - B.

and

Al * A2

10

- - - - ,._-_- , _. _. - - —^.^^~—— . ■

—^trnmr^ i i i)i....i.ii in i II... ■ i ..i u.-i i .

is reduced to

Al - C.

Goal-subgoal strategies are used only to make reduction in the consequent.

The reason <vhy we have goal-subgoal strategies is that because they are more efficient than

conditional reduction strategies Niosl of the time we are interested in proving the validity of a

statement of the form A -» B. Thus, we are interested in how B can be proved from A. Also the

antecedent A Is usually more complex than the consequent B because the antecedent contains all the

information about data structures and control structures. So the goal-subgoal strategy gains efficiency

by limiting the reduction to the consequent part.

11

■ , - - ■- -

 ,—. •i^n>OTOT^WMMa«iMi i«m\-'

IV. Implementation.

This verification system is built upon the PASCAL venficstion conduion generator

VCCEN[9] First, files of the user's Axioms and Coal ttatementt are input to the system, and the

corresponding reduction rules and goal-subgoalmg strategies are constructed. This yields a special

reduction and proof system for the data structures and functions described bv these statements. The

system is extensible, since strategies can be added to handle larger domain of programs. Next, a file

containing the program with assertions is processed by VCCEN to produce verification conditions.

These are passed to the proving sys.em. The proving system is divided into several functions. They

are (i)the arithmetic simplifier, (ii)the equality substitution algorithm, (ili)the truth value substitution

algorithm, (iv)the unconditional simplifier, (v)the conditional simplifier, (vi)the goal-subgoaler, and

(vii)the logic symbol elimination algorithm.

Gentzen-type inference rule notations are used to express the effects of functions.

NOTATION : B

,where C is the goal and A and B are subgoals bc.n of which

must be proved in order to prove C.

(i) The arithmetic simplifier transforms arithmetic expressions into standard representations, and

simplifies them. The standard representation is a sum of products of simple factors. A simple factor

is an arithmetic expression which is neither a sum nor a product Then each product consists of a

coefficient(if not equal to I) followed by simple factors w.nch are ordered by system-defined

ordenngs. And the sum consists of the ordered products followed by a constant(if not equal to 0).

(n) The equality substitution algnriilim handles verification conditions of the form

AA(a=(3)AB - C.

12

iiM^MiiMm«*Mi --■—^-- -■-^■-■-

wmmrmm

r

CASE I. Suppo ;e one of a or fj is a variable. Without loss of generality we can

suppose a to be a variable. If /3 is a constant, a variable, or an

expression with a not appearing free, then all the occurrences of a in A, B

and C ^re replaced by ß.

CASE 2. Suppose one of a or (J is a variable. Without loss of generality we suppose

a to be a variable. If ß is an expression containing a. then all the

occurrences of (3 in A, B and C are r^plared by a.

CASE 3. If a and 0 do not satisfy cases I or 2 then all the occurrences of a are

replaced by ß.

(in) The truth value subMitution algorithm evaluates logical sentences. The grand rule of the truth

value substitution is

Tsubst (A.a)/\aATsubst (B.a) -. TsubsUCa)

AACIAB -• C,

where both A and B may be null expressions and a is not a conjunction. Tsubst(A.o) is defined by

the following jet of functions, which give the value of A assuming a is true.

Tsubst(A.a) = i f a is of the form -ß then FsubstlA.ß) else

if a is of the form (3A(then

Tsubst(Tsubst(A,0),() else

replace all occurences of a in A by "True".

Fsubst (A,(3) = i f ß is of the form -«a then TsubsUA.a) else

i f (3 is of the form aac then

Fsubst(Tsubst(A,ot),() else

i f (3 is of the form av(then

FsubsUFsubst (A.al.c) else

replace all occurences of (3 in A by "False".

13

■ - ■ ■■ ._ __M_____„_^_—^ __^___ _,^__^„ ^»^

^»^■^p^m -—.

(iv) The unconditional simplifier applies alt unconditional reduction strategies.

The algorithm works from inside out. Thus if we want to simplify

R(P1 PN).

first all PI,... ,PN are simplified to Ql QN respectively. Then R(Q1 QN) is simplified.

(v) The conditional simpiifier applies all conditional reduction strategies. The treatment is different

according to the position of the expressjon--in the antecedent or consequent of the verification

condition Suppose a conditional ^cu'ction strategy is given to the system by a itatement

AXIOM IF <pattern 1> THEN <pattern> » <expre98ion>,

and the verification condition to be proved is

AlA.,,AAn •* C1A. ..ACN.

If <pattern> matches a subexpression of CI, then

AIA. ..AAM -• <pattGrn 1>

becomes the subpioblem to be solved.

Next, suppose • pattern> matches a subexpression of the antecedent say AI. Then

AIA. . . AAI-1AAI+1A. . .AAM I <patterr,]>

becomes the subpioblem to be solved. If it is valid tiien the replacement takes place as before.

The validity is checked by recursively activating the prover. So this is a depth first search,

and it might go into a wrong direction infinitely. So the system allows the user to specify the search

depth If the search reaches this limit, it is backed up until the last decision point.

(vi) The goal-subgnaler incorporates all goal-subgoal strategies. Suppose a goal-subgoal strategy is

given to the system by a statement

GOAL <pattern> SUB <pattern 1>,... ,<pattern N>1

and the verification condition to be proved is

Al A. . . AAN -» C1A. .. ACH.

If CI matches to <rottern>, then

A1A...AAN -• -pattern 1> A1A..,AAN -• <pattern N>

are set up as a disjunction of subproblems successively, until one of them is proved to be "True". If

14

 j i

r " ■' ■,"1 i i • ■ ■■ ■

the proof is successful the problem is reduced to

A1A...AAN - C1A...AC1-1AC!+1A...ACM.

(VII) The logic symbol elimination algcrithni works on elimination of logic symbols V and "D"

from the antecedent of the statement. Their functions are explained by inference rules as shown

below

(v-eIi m inat i on)
AAOAB -• C AA(3AB •« C

AA(av(5>AB - C

AA-OAB ■• C AA^JAB ■« C
(D-eIi m i nat i on)

AA(a3(})AB - C

These seven functions are applied serially. But the simplification may be applicable after

reducticn by goal-subgoalmg So these functions are iterated several times. The user can specify the

number of iterations.

15

 _ . .

 ' ■•"""'

[. !

The overall structure of the proven is as follous.

Proven

Repeat
2 or 3
Times

1 1 f v or

1 1
I Arithmetic j
j Simpli f ier 1
1 !

3 exists

1

1 1
I Logic
I Symbo1 i
I Eliminat ion j
j Algorithm !
1 1

EX T

1

1 1
I Equality I
| Substitution j
j Algorithm i
1 1 1

i
1 1
I Pnoven |
i 1

1
i

1 1
| Truth Value |
| Substitution i
I Algorithm
1 1

1
1
1
t

EXIT
1

1 1
| Unconditional
j S i up 1i f i er |
i 1

1
1

Conditional Simplifien
(Recursively activates the
prover)

Depth of recursive search
has a fixed bound which
can be altered before
running the system.

I GoaI-SubgoaI er
I (Recursively activates the
| prover)

16

- -

1 ■ J "'■l« "''' '—

PASCAL

TYPE SARRAY-ARRAYtltLl OF INTEGER:

PROCEDURE EXCHANGESORT(VAR A:SARRAY;L:INTEGER) i
INITIAL A=A8;
ENTRY 1<L;
EXIT I loorteclarrayof (A.A8)!

VAR X:REALiVAR K.I.J:INTEGER;

BEGIN
Ms
INVARI ANT Permutat i on (A, A0) AÜrder&rl (A, I +1 .L) APar t i 11 oned (A, I) A (I >1)
UHILE I>1 no

BEGIN
>2;X-A[l)ilMj
INVARIANT BigcjestlA.J-l.k'lAdsKlAfKsJ-DACJ-liDACX-AtK])
UHILE J<I DO

BEGIN
IF X>A[J] THEN GOTO 3;
X^A[J];
K-J;

3:J-J+1
END;

MIO-Ams
A[IJ»-Xj

END:
END;.;

We ,IIP going to explain thr intended interpretation of symbols and the set of axioms defining

them When we exprpss ixioms, we have to be careful not to introduce an inconsistent set. Since a

consistent set of axioms has a mocu.!. we can avoid introducing an inconsistent set by defining an

interpretation and justifying axioms by showing validity relative to that mterpretation.

Inputs to this program are an array A and an integer parameter L defining the upper bound

17

V. Application to Sorting Programs

As the first example, the verification of a simple sortng program which successively finds the

largest element among the unordered part of the array and puts it at the end of the ordered pirt Is

considered This program is the one considered by King[10j. The program with input i.id output

conditions and an assertions about loop invariants is shown below. This is the actual input form for

the system.

■

of the array Since we have an array with at least one element, the input condition is

l.L-l.

The output condition is

1 5jor teclcirr.-ujof (A. A01 ,

where A0 is the Initial value of A at the entrance to the procedure and I ssortedarrayof (A, A0)

means Out A8 is sorted to become A

1. Issortedarrayof(A,B)

In order A to be a sorted array of B, it must be ordered in ascending order and it must consist

of all the elements of B and nothing else. We describe the two facts by introducing additional

predicates. The axiom is,

Orr|erpH(A,l,L)APermutat i on (A, B)3l ssortedarrayof (A.B).

2. Orderod(A.J.L)

The mterpietation of Ordered (A, J, LI is that the subarray A[J;L] is ascendingly ordered.

Thus,

Ordered (A, J.LI *- VX. (J<X<L-1:>A [X] <A[X+1]).

where *- means that the left-hand side is the shorthand notation of the right-hand side.

Three axioms are necessary to specify the predicate. The first one specifies the boundary case

when J is equal to L*l. Then there is no element in the subarray and an empty array is ordered. So

OrclerecilA.'.+l.L)

is true

The next axiom is an induction axiom which state that if the property holds for a smaller

subarray it holds for a larger subanay under certain conditions It is

Or clef eel (A. J. L) /sPar t i t i oned (A. J-1) :>0rclered (A, J-l, L).

This axiom enables the property to be extended to the whole array. The meaning of

Partitioned(A,J-ll is that the array A is partitioned between J-l and J such that all the

elements in the upper half are larger than or equal to all the elements in the lower half.

The last axiom states that changing elements outside of the concerned subarray will not

18

 —

1 "

change the property The operation on the array in this program is Exchange (A, I, J), which is an

array obtained by exchanging I-th and J-th element of A, thus

DrderecKA.J,L)A(I<J)A(K<J)APartitioned(A,J)

DOrdered(Exchange(A,1,10 ,J.L).

3. Partitioned(A,J)

The meaning of this predicate has been stated before as

PartitionecKA.J) *- VX.Y.{1<X<J<Y<L3A[X]<A[Y]).

There are also three axioms to specify this predicate with the same nature as those of

Ordeicd(A,J,L)

When J is equal to L. there is no element in the upper half of the array, so the property

holds. Thus, the boundary property is

Parti t ionecl(A.L).

The .ixiom about induction is

Port i t ionecKA. JlABicjcjest (A.J.JisParti t ioned(A, J-l).

Since Biciyest (A, J, J) means that A[J] is the biggest element among elements of the subarray

A[l J], there is a separation between J-l and J.

Also if we exchange elements of the lower half of the array the property remains valid. So,

Par t i t i oned(A.J)A{I<J)A«<J)aPart i t ioned(Exchange(A, 1,<), J).

4 Biggest(A,l.J).

The meaning of this predicate is that, A[J] is the biggest element among the elements of the

subartay A[1 i]

The aviom of the boundaiy case states when I is equal ro 1. Then, 'here is one elem?nt in the

subarray which is the biggest element Thus,

Biggest(A,l.l).

The axioms about the induction are

Birjgest(A.I.J)A(A[J]>A(Ul]):>Bigge9t(A.Ul.J)

and

19

mi^mi^mt ■^^^■^Wll , iniM^^^pnfniuniaini.uniw.niM ■•■UN > • > »■WHIJIIIIIU •««w ■ . ■■■ «

•

Bi ggest(A,I,J)A(A(I+1J 2AIJ])aBigges t(A.I+].I+1).

The next axiom states that if we move the biggest element by Exchange, then the place of the

biggest element changes The objective of the program is to move the biggest element of subarray

A[l I] to A[l] Thus, the axiom

Biggest (A, I, JlDBiggest (Exchantje (A, J, I), I, I),

is sufficient.

5. Permutation(A.B)

The meaning is that the array A is a permutation of the array B.

If we exchange elements of an array, this is a permutation of the array.

Thus.

Pernutat ion (Exchange(A, 1, J) ,A)

is an ax.om A'so Permutat ion(A.B) is an equivalence relation, so

Permutat ionlA.A), and

Permutat ion (A,B):>Perimjtat ion(B,A), and

Permutat ion(A.B)APermutat ion(B,C)Permutation(A,C),

are axioms Since any permutation can be obtained by repeated operations of Exchange, these are

sufficient axioms to prove the prop?rty.

6. Exchangp(A.I.J)

The ixiom sufficient to represent that any N-place cycle is decomposable into N Exchanges is

Y.A[J]D^"-A.I.Y>.J.X>-Exchanrje(<A,I,X>.I,J),

20

. - _„__^„_^_ J

^^i^^— ■ ■ '"■ -—-■ - . ■■ - .

The followitig listing is the goalfile which is supplied to the system along with the program.

This shows how simplification and goal-subgoaling rules are selected to represent axiomj.

GOALFILE

•

GOAL Issortedarrayof(«A.uB) SUB Permutation(A,B)AÜrderedlA,1,L) t

AXIOM OrcleredlA.L+l.LUTRUE;
GOAL Orilered('?A.«Pl,L) SUB Ordered(A,Pl+l .L) APart i t ioned(A,Pl) j
GOAL 0rdGred(Exchancje((»A,(?Pl,(»P2),9P3.L)

SUB (Pli^MPZsPSJAOrderedlA.Pa.LlAPartiti-jnedJA.PS);

AXIOM Partltioned(A.L)«TRUE;
GOAL Parti tionedleA.ePl) SU3 Bicigest (A.Pl+l,Pl+l)APart i t ionedCA.Pl+l) •
GOAL Parti tioned(Exchange((?A.9pr.eP2).eP3)

SUB (PI<P3)A(P2<P3)APar t i t i oned(A,P3)|

AKIOn Biggest (A.1.1)"TRUE;
GOAL Biggest (Exchancje(iaA.6'Pl.@P2).®P2.(?P2) SUB Biggest (A,P2.PI) ;
GOAL Biggest (»A, tP2, »PI J SUB (A[P1] >A[P21)ABigcjest (A,P2-1,P1);
GOAL Biggest (l?A.öP2.e'P2) SUB (A [P2] >A [PI]) ABiggest (A,P2-1 .«Pl);

AXIOH Permutation(eI)eI)~TRUE;
AX ION Permutat ion(Exchange(ell,®12,el 3),@I1)-TRUE;
GOAL PerniutatiQn(eA,eB) SUB Permutat ion(A,®C) APermutat ion (o»C,B) {

AX I OH IF Y=P1[P3] THEN
<<ePl.@P2.9Y>,eP3.eP4>«Exchange(<Pl.P2,P4>,P2.P3):

GOAL 0 < ©P1+(*P2 SUB (0<P1)AO<P2) j
GOAL (9P1<1»P2 3UB(P1<C»P3)A((»P3<P2)J
AX I On •P1<«P2 " Pl+l<P2i

21

 — —■—

-—m —

This is the output of computation which verified the program in 19 seconds.

«i

THERE ARE 4 VERIFICATION CONDITIONS

K J
(1<L
-♦

Permutat i on(A,A) &
OrderedU.L+l.L) &
Partitioned(A,L) &
1<L &

Pe^tnutation(Atfl.A, fi
Orclered(AA '*1+1,L) &
Partitioned(A#l,I#l) &
ISlftl

I ssor tedarrayof(A#l,A)))

2
(1<I &
Pcrmutation(A,A8) &
Ordered(A,I+1,L) &
Part i t ionecKA. I) &
1*1

BirjcjestlA.2-1,1) &
1<1 &
112-1 &
2-isl &
A[11=A[1] &
(-.J«3sl S
Biggest(A,Jrf3-1.K#3) &
1<<«3 &
KAG<J</3-l &
J#3-1<I &
XäG-AIK«]

Permutation(«A,IC#3,AtIJ>,l,X#3> A0) &
0rclered(«A,K*3,AtIJ>.I.X#3>,I-Ul,LI &
Parti tioned(<<A.K#3,A[I)>.I.X«3>,I-l) &
lsl-1))

» 3
(-AIJ1<X &
J<I (ü
BiggestlA,J-l,K) &
ISl? &
K<J-1 &
J-l-I &
X-AtIC]

Biqcjcst (A, J+l-1. J) &
1SJ Ä
J<J+1-1 &
J+l-lsl &
AUJ-AIJ])

22

mm i

ft U
(A(J]<X &
J<I &
Biggest (A,J-1,KI &
UK &
K<J-1 &
J-lsl Ä
X-AtK]

Bigcjest(A,J+l-l,K) S
ISK «
KSJ+I-I &
J+l-lil &
X-AK])

AFTER SOnE SIMPLIFICATION, YOU CAN GET

U 1
TRUE

n 2
TRUE

ft 3
TRUE

« 4
TRUE

TIME: 19 CPU SECS, 21 REAL SECS

778 STATE STACK CELLS USED
13G TOKEN STACK CELLS USED

958 DECISION POINTS
19A7 FAILURES
3 SECS GC TIME

23

■ i - —
...-. --

' ' " ..HI.INI.IU.F .1" I ■ -ii 1

Here is another sorting program which has been verified. This is Floyd's TREE SORT

program[4] with assertiorf «nd the goalfile. This is verified with H2 seconds of computation time.

Most of the previously defined predicates are used in the goalfile with the same set of axioms. Thus

there is a possibility of forming a standard set of symbols and axioms.

PASCAL

PROCEDURE TREES0RT3(VAR A:TREEARRAYjL:INTEGER);
INITIAL A=A0!
ENTRY L>2;
EXIT Issort-edarrayof (A,A0);

PROCEDURE SIFTUPCVAR HjREAL ; I,N:INTEGER);
INITIAL l-I8,n-«0|
ENTRY Treeorclered(n.I+l,N)A(I>l)j
EXIT Treeorderecim, IB.N) APermutat ion(n,n8) A

Unchanged(0,08,1,10-1)AÜnchanged(H, MB, N+l, L);

VAR C0PY:REAL; J:INTEGER;

BEGIN
COPY * miJi

18: J ^ 2 « I;
IF J < N THEN

BEGIN
IF J < N THEN IF MU+l] > n(J] THEN J »■ J+l;
IF fllJ] > COPY THEN

BEGIN
run •■ nu];

ASSERT Treeorclered(n.I8,N)A(C0PY<n[J DIV 2])A
Perniutation(<n,J.C0PY>,n8)A
Unchanged(M.ne,1.10-1)A
Unchang»d(n,n0,N+l.L)A
{N>J)A(J>I0)A(I0>1).
I «- J|
GO TO 10
END;

END;
run - COPY;

END;

VAR WORK!REALj I:INTEGER;

BEGIN
I-L DIV 2;
INVARIANT TreeorcleredIA, 1+1 .L)A(I>1) APermutat ion(A. A0)
UHILE I>2 DO

BEGIN SIFTUP(A.I.L); UI-1 END;
I-Lj
INVARIANT Ürdered(A,I+l.L)APartitioned(A,I)ATreeorclered(A,2,I)

A(I>l)APerniutation(A,A0)
UHILE I>2 DO

BEGIN
SIFTUP(A.l.I)i
UORK-AIU; AIll^Atl]; AdKUORK;
M-l
END

END;.;

24

 ■ J

 ' "■—-"—'—

t

This is Hoare's FIND program[7] and goalfile. This program is verified with 53 seconds of

computation time.

PASCAL

PROCEDURE MNDIVAR A:FARRAY;F.K: INTEGER);
INITIAL A-A0;

1 ENTRY l<f&F<Ki
EXIT PARTmONED(A.F)APERnUTATION(A.A0);

VAR n.K: INTEGER;VAR R:HEAL:

BEGIN
M-l; N^K;
INVARIANT niNVARIANKA HIANINVARIANT (A.N)APERnUTATI0N(A.A9)

A(MIF)A(F<N)
UHILE n < N DO

BEGIN
R-AIF]; Uri; >Ni
INVARIANT MINVARI ANT (A.n)/sNINVARI ANT (A,N)/vI INVARIANT (A, I,R)

AjINVAniANT(A.J,R)APERnUTATI0N(A.A8)A(n<r/A(N>J,
UHILE !<J DO

BEGIN
INVARIANT IINVARIANT(A.I,R)A(n<I)
UHILE A[I] < R DO I- I+lj
INVARIANT JINVARIANT(A,J.R)A{N>J)
UHILE R < A[J] DO J «- J-l;
IF 1 < J THEN

BEGIN
U«-AII1| AIIJ^AIJ]; ACJI^Ui
M+li >J-1
END

END:
IF F <J THEN N-J ELSE IF I«F THEN n-\ ELSE GO TO 10
END;

W:
END;.;

GOALFILE
AX I On r'ER'lUTAT I0N(«I, •!) -TRUE;
AK1 OH PERflUTATION (EXCHANGE («11,«I2.«I3),til) «TRUE;
GOAL PERnUTATION(@A.@B) SUB PERnUTATION(A,*C)APEPnUTATION(eC.B);

AX I On IF Y-PHP2]
THEN «•Pl,«P2,«Y>,tP3,«P4>«Exch»ng«(<Pl,P2,P4>,P2,P3)|

GOAL PARTITIGNtD(<?A,(?I) SUB niNVARIANT (A, I)ANINVARIANT (A. I);
AXIOn niNVARIANT (PA.D * TRUE; -
GOAL niNVARIANT(«A,»m

SUB IINVARlANT(A,tI,«X)AjINVARIANT(A,«JltX)A(Ijj4l)A(Ijfl)Am»J)i
GOAL niNVARIANT (EXCHANGE («»A.al.aJl.sn) SUB niNVARIANT(A,n)A(ljn) AlJiM) j
AXIOn NINVARIANT(»A,K) « TRUE;
GOAL NINVARIANT(IPA.&N)

SUB 11NVARI ANT (A, el. «X) AJI NVARI ANT (A. aJ, eX) A (12 J+l) A (I ^N) A (NkJ):
GOAL NINVARIANT(EXCHANGE(eA.el,eJl.aN) SUB NINVARIANT(A.N)A(1 <N)A(J<N);

26

J

r^ —-——- * ■^w^^^w«

GOAL 1 INVARIANT («-A.^I^AIejn SUB niNVARIANT (A. I) AIJ^I) •

SItil!^!JÄ?IE1!cSii^i^ilMT^i,r-,lA",t-|-i,MJ*A,-C111

r-n. ,.SUB IINVARJANT(A.I.R)A(I<ji/v(R>ÄUJ);
GOAL JINVARIANT(«A,«I,«A[«J]) SUB NINVARIANTIA ItA(J<I)-

SUB JINVARIANT(A.J.R)AnsJ)/H(RsÄtIJ)i

AXIOM »A<96 - A+1<B:
GOAL •Pls«P2 SUB(Plil?P3)A(9P3<P2);
AX I On IF P1<P2 IHEN (?P2£ePl « P1.P2-

Von Hcnke and Luckham h^ve verified other programs using this system. Also a detailed

study of the verification method has been perfoimed.[5]

Acknowledgements The author is grateful to David C. Luckham, who helped a great deal in writing

this paper and in developing the system. Also, he is grateful to Friedrich W. von Henke and Jorge

Morales for their advice and comments during the development of the system.

27

L __^

